
Linear Multistep Methods 
with Mildly Varying Coefficients 

By J. D. Lambert 

Abstract. Consideration of a common assumption in the theory of weak stability of 
linear multistep methods for ordinary differential equations leads to the study of a 
class of linear multistep methods with mildly varying coefficients. It is well known that, 
in the case of constant-coefficient methods, optimal stable methods suffer from weak 
instability. Corresponding methods of the new class, of step-number 2 and 4, which do 
not suffer from weak instability are derived. 

1. Introduction. The general linear multistep method for the numerical solution 
of the initial-value problem 

(1.1) = f(X, y); y(a) = 

on an interval a ? x ? b may be written as 

k k 

(1.2) E ajy,+j = h E frjfn+j 
j=O j=O 

where yj = y(xj), fj = f(xj, yj), xj = a + jh and h, aj and hi are constants. The 
theory of the convergence of the solution of (1.2), with appropriate starting values 
to the solution of (1.1), is well understood [1], [2]. In particular, the necessary and 
sufficient conditions for convergence are that the linear multistep method be con- 
sistent, and stable in the sense that the associated polynomial p(v) = Ej=o ajug has 
all its roots of modulus less than or equal to unity, and has no multiple roots of 
modulus unity. The main effect of this important theorem is that, in general, we 
reject out of hand any method of class (1.2) which is not stable and consistent. It is 
well known, [1], that the maximum order that a stable linear k-step method can 
attain is k + 2 and that this order can be achieved only when k is even and all the 
roots of p(r) have modulus unity. In this paper we shall refer to stable linear k-step 
methods of order k + 2 as optimal stable methods. 

The theorem of Dahlquist does not, however, guarantee that a stable con- 
sistent method will give satisfactory numerical results when we calculate with a 
fixed nonzero value for h; nor does it help us to choose a value for h which can be 
expected to give acceptable results for a given initial value problem. To answer this 
last point, theories of weak, conditional or numerical stability have been developed 
by many authors [3], [4], [5]. In particular, it is known that optimal stable methods 
exhibit weak instability. 

It is the purpose of this paper to show that, by replacing the constant co- 
efficients aci, Oj of (1.2) by variable coefficients cXa + haj(xn), Oj + hbj(x.), where 
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the aj(x) and bj(x) are functions specified by the particular differential equation 
under consideration, it is possible to control the weak stability characteristics of 
the method. In particular, the weak instability associated with optimal stable 
methods can be removed, and stabilized versions of these methods are derived in the 
cases k = 2, k = 4. It is hoped that the analysis, which is necessarily restricted to 
the case of a scalar differential equation, will throw light on the mechanism of weak 
stability. 

The investigation starts from a consideration of the assumptions commonly 
made in theories of weak stability. A typical argument runs as follows. Let the 
method (1.2) be stable and consistent, let the exact solution of (1.1) be Y(x) and 
let Yj denote Y(xj). Then 

k k 

Z ajY,+j = h ij3f (xn+j, Yn+j) + Tn 
j=o 0j=O 

where T, is the local truncation error. If {y } now denotes the computed solution 
of the difference equation obtained by substituting for f from (1.1) in (1.2), then 

k k 

E ajyn+j = h E i3jf(x,+j, yn+j) + Rn 
j=o j=o 

where Rn is the local round-off error. Subtracting these two equations, and applying 
the Mean Value Theorem, gives the following equation for the accumulated error, 

fe - yn:yr 

k k f 
(1.3) (xaj- ?,+ j = h a (n+ j, n?+j)E,+j + En 

__= j= 

where S.+j E (yn+j, Yn+j) and En = T- Rn. Two assumptions are now made: 
Assumption (a). E. = E, constant. 
Assumption (b). af(x, y)/ay = - q, constant. 
The error equation now reduces to the linear constant-coefficient difference 

equation 

k 

(1.4) E (ao + hq/3j)Ec+j = E. 
j= 0 

If rm (m = 1, 2, ..., Ik) are the roots (assumed distinct) of the polynomial 

Z:j=o (ai + hq1j)rj, then the solution of (1.4) is 
k k 

en= > Bjrfn + E/hq 
j=O 0 

where Bj (j = 0, 1, *k*, k) are arbitrary constants. Obvious modifications are made 
in the case when the roots rm are not all distinct. As h -> 0, the roots rm tend to 
the roots tm of p(r) and, in particular, there will exist a root ri which tends to 

1= ?1, since, by consistency, p(r) must have a root at +1. By stability, the 
remaining roots tm (m = 2, 3, * * *, k) of p(r) all lie in or on the unit circle. Weak 
instability in a stable method arises when, for some range of hq, any of the roots 
rm (m = 2, 3, * *, k) lie outside the unit circle (or outside the circle Iz = Jr I if the 
weak instability is defined in a relative rather than an absolute sense). The most 
familiar example of this phenomenon arises with Simpson's rule, for which we 
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find P1 = 1, ?2- -1, ri = +1 - hq + O(h2), r2 = -1 - lhq + O(h2), whence 
the well-known fact that the method exhibits weak instability (both absolute and 
relative) for all positive h, when af/ay is negative. 

Of the two assumptions (a) and (b) made in the above argument, (b) is the 
harder to justify. It is strictly valid only in the case f(x, y) = - qy, q constant, and 
it is not difficult to fabricate differential equations for which the assumption is 
difficult to accept. 

In this paper, we propose replacing Assumption (b) by 
Assumption (b'). af(x+j1, i+j)/l3y = -q(xn), (j = 0, 1, * k). 
Thus we ignore variations in af/ay throughout the interval spanned by the 

method, but permit variation of af/Oy with n. [In the analysis which follows, we 
do not need to make Assumption (a).] The error equation (1.3) now reduces to 

k 

(1.5) {jai + hq (x.)ij3en+ = En 
j=0 

a linear difference equation with variable coefficients. We do not make the analysis 
of this equation any harder, and may well make it more profitable, if we replace 
agj by ai + haj(xn) and Aj by #j + hb(xn). We are thus motivated to study a class 
of linear multistep methods with variable coefficients. 

2. Linear Multistep Methods with Mildly Varying Coefficients. The class of 
methods is defined by 

k k 

Z &j(xn)yn+j = h a 3 (xn)f.+i 
(2. 1) j=0 j=O 

&j(xn) =- a + ha1(x.); Bj(x.) - j + hbj(x.) , 

where a1, f3j are constants and Iaj(x) 
? 

A, Ibj(x)I < B for all x E [a, b], (j = 0, 
1, * k, I), where A and B are finite constants. 

We cannot proceed with confidence to study the application of method (2.1) 
with a fixed nonzero value for h until we have established the conditions under 
which the solution of (2.1), with appropriate starting values, will converge to the 
solution of (1.1). 

Order and Consistency. Define the linear difference operators L and M by 

k k 

L[y (x); h] = , a y (x + jh) -h i3jy'(x + jh) , 
j=o j=O 

k k 

M[y(x); x; h] = Z aj(x)y(x + jh) - h E bi(x)y'(x + jh) . 

L is the operator associated with the constant-coefficient linear multistep method 
(1.2), and its order p is defined in the usual way. If M is applied to a sufficiently 
differentiable function y(x), we obtain 

M[y(x); x; h] = Do(x)y(x) + hD,(x)y'(x) + * + hsD (x)y8(S) ( + 

If Do(x) = DI(x) = ... = D,(x) = 0 for all x E [a, b] and Dr+i(x) # 0 for some 
x E [a, b], then we say 1II is of order r. 
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Let the operator L associated with (2.1) be defined by 

L[y(x);x;h] = L[y(x);h] + hM[y(x);x;h] 

Then the order of L is defined to be p=min (p, r + 1). Method (2.1) is defined to 
be consistent if L has order P _ 1. 

Stability. The method (2.1) associated with the operator L is said to be stable 
if the operator L is stable. 

THEOREM 1. A sufficient condition for the method (2.1) to be convergent is that it be 
stable and consistent. 

Proof is by a direct extension of the proof given by Henrici [2, pp. 242-246], for 
the corresponding theorem in the case of constant coefficient methods. That the 
extension is possible is a consequence of the dependence of Henrici's proof on a 
lemma (Lemma 5.6 of [2]) concerning the growth of solutions of a linear difference 
equation whose coefficients are mildly varying in just the sense that the coefficients 
of (2.1) are mildly varying. Details of the proof are given in the Appendix. 

It is of interest to note that without further conditions on aj(x) and bj(x) we 
cannot show that stability and consistency are necessary for the convergence of 
the method (2.1). However, in later sections of this paper we shall be concerned with 
the case where the variable parts aj(x) and bj(x) of the coefficients in (2.1) are 
chosen proportional to q(x). The following result holds. 

THEOREM 2. For the subclass of methods (2.1) for which aj(x) - djq(), bj(x) = 

tbjq(x), where q(x) = -Of(x, y(x))/Oy and dj, ^bj (j 0,1, ***, ls) are constants, 
stability is necessary for convergence. 

Proof. If the method is convergent, then it is so for the initial-value problem 
y' = f(x); y(a) = q. For this problem q(x) = 0, and hence aj(x) = bj(x) = 0 for all 
x. Method (2.1) is then equivalent to method (1.2) whose stability is necessary for 
convergence, by the theorem of Dahlquist [1], [2]. The result follows, since stability 
of (1.2) implies stability of (2.1). 

Similar reasoning applied to the question of the necessity of the consistency 
condition breaks down, since consistency of (1.2) does not imply consistency of (2.1). 
However, the existence of a convergent but inconsistent method of the subclass 
described in Theorem 2 would be of little practical interest, since its truncation 
error would be of order h. 

3. The Choice of Variable Coefficients. We assume that method (2.1) is stable 
and consistent. Under Assumption (b') the error equation which arises when we 
apply (2.1) to (1.1) with a fixed nonzero value for h is 

k 

(3.1) A {Iaj + ha (xn) + hq (x) [O3j + hbj(x.)]}c?+j = En. 
i=O 

Since we would like to choose aj(x) and bj(x) in order to minimize the chances of 
(2.1) developing a weak instability, we might be tempted to make the choice 

(3.2) a3(x) = -Ajq(x) , (j = 0 1, *.. *, k) . 

This is a practical possibility, since q(xn) = - Of(xn, yn)/Oy may be computed step- 
by-step along with the solution. However, consistency demands that the order of 
the operator L be at least one, and that of the operator M be at least zero. The first 
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of these two requirements implies 
(i) ao0 + a 1 + * * * + ?k = 0, and 
(ii) al + 2a2 + -* - - k+ k = /0 + -1- + ? ** S, while the second implies 
(iii) ao(x) + al(x) + * * * + ak(X) = 0 for all x E [a, b]. Condition (3.2) together 

with (iii) can hold for all q(x) only if J:=o = 0, which, with (i) and (ii) implies 
that the polynomial p(r) has a double root at v = 1, contradicting the assumption 
that (2.1) is stable. 

It is of interest to observe that if, despite the resulting instability, we were to 
make the choice (3.2) and use the remaining degrees of freedom in choosing co- 
efficients in such a way that the order of (2.1) be as high as possible, we would find 
that the k + 1 coefficients bj(x) would be defined by a set of k + 1 linear constant- 
coefficient equations whose inhomogeneous terms were all proportional to q(x). 
Thus the bj(x) as well as the aj(x) would turn out to be proportional to q(x) and, 
by Theorem 2, the instability of (2.1) would necessarily cause divergence. 

Since direct attempts to remove the terms of order h in (3.1) fail, we must find 
a solution for (3.1) in a form which indicates how an advantageous choice for the 
variable coefficients may be made. Let 

(3.3) Oj(n) = aj(xn) + q(xn){I3j + hbj(x,)} X (j 0, 1 ,.. *I k) 

The error equation (3.1) may now be written as 

k k 

(3.4) EajEn+ = - h E 0j(n)En+j 
j=O j= 0 

where there is no loss of generality in taking ak =+ 1. We now formally regard (3.4) 
as a constant-coefficient linear difference equation with an inhomogeneous term 
represented by the whole of the right-hand side. The complete solution of such an 
equation may be expressed as the sum of the complementary function and a par- 
ticular solution; moreover, the latter may be represented as the convolution of the 
inhomogeneous term with the Green's function. Let { IN} be the complete solution 
of the reduced equation 

k 

(3.5) EajEn+j = 0. 
j=0 

The Green's function {zn } is then the particular solution of (3.5) satisfying initial 
conditions zo = zi Zk-2 = 0, Zk-l = 1. We then have 

n n-1 

(3.6) en = "n F zn ntdt = tin + zn-tdt, 
t=1 t=1 

where 
k 

d t = E t- h E j4(t -1)t+j-i e 
j=o 

Since the right-hand side of (3.4) contains the dependent variable En, (3.6) is not, 
of course, a solution of (3.4), but represents an alternative form of the Eq. (3.4). 
Direct substitution establishes that (3.6) and (3.4) are indeed equivalent. 

Define 
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k 

(3.7) dt* = Eti- h -j (t l)t+j-l. 

From (3.6) and (3.7) it follows that 

k (t+j_2A 
dt* -dt = h i, 4j(t - ){ E ztt+jisids} 

t+k-2 kA 
= h t { 43(t - I)zt+jis-i ds s=1 i=0 

if we take zn to be zero, when n is a negative integer. From the definition of zn, we 
see that the expression in braces in the last equation vanishes when t < s, and hence 
we may write, for k > 2, 

(3.8) dt* = dt + h Z Dtsds8 t = 1 2*** T s=1 
where 

k 

cJbts = A (t -I)zt+j-sl 
j= 0 

For any fixed T let d* be the vector with components di*, d2* .. . , d* and d be the 
vector with components di, d2, *.*, dT. Then, since 5ts = 0 when s > t, we may 
write (3.8) in the form 

d* = (I + h4)d, 

where I) is a lower triangular matrix. Moreover, if the original method (2.1) is 
stable, zn is bounded as n -? , h -. 0, nh fixed, and thus, recalling the definition 
(3.3) of 4j(t - 1), we see that c ts = 0(1) in this limit. Hence for sufficiently small 
h the inverse of I + h4I exists, and we may write 

d = (I + h4)-ld* 

or, equivalently, 

(3.9) dt = ZItsds* t = 1,2, *2*, T, s=1 
where VI4ts = 0 when s > t. Since (3.9) holds for any T, we may, from (3.6) express 
the solution of the error Equation (3.4) in the form 

n-1 (t A 

(3.10) En = 7 Z1n + d Zn- tA E tsds* 
t=1 s=1 

If we now consider the case when p(r) = Ek=o aeji has distinct roots t1, .2* 

in satisfying the condition of stability, we may write N = Z=l1 A'pn, where 
AP, p = 1, 2, * * *, k are arbitrary constants. (If Vq, Vq,+ are a conjugate pair of com- 
plex roots, than Aq, Aq,+ will be taken to be complex conjugates.) From (3.7), we 
may write 

k 

(3.11) dt* = Etl- h E Appt-1Fp(t - 1) 
p=1 
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where 
k 

Fv(t-I = oj(t - 1)Pi 
j=0 

On substituting for 7tn and ds* in (3.10) and rearranging, we find 

k n-1 /t\ 

EnE Ap 
0 

g-n_ h E z- -t E AP tsv S-1Fp (s- ) 

(3.12) P=1 t=h s=) 
n-1 t \ 

+ EZn- t E ~ptsEs-l) t=? s=l 

This equation displays the solution for En in the form of complementary function 
plus particular solution, the former being a linear combination of fundamental 
solutions of the form tn + Pp(n), where 

n /t\ 

Pp(n) =-h E zn- t AEts~p8lFp(s )), p = 1, 2, *, k 
t=l s=l 

Pp(n) may be interpreted as a perturbation of the corresponding fundamental 
solution n of the equation Ek=o ajEn+j = 0. 

We shall now show that if Fp(s- 1) = 0(h) for all s as h -> 0, n -> oo, nh 
fixed, then the perturbation Pp(n) = 0(h). To do this, we must find the order of 
magnitude of the coefficients l/'ts. From (3.8) it is clear that 

tt =I + OM= 0(1), t = 1,2,** 1 

since -T)tt = 0(1). Assume V/ ts = 0(h) for s < t, t = 2, 3, *, q. From (3.8) and 

(3.9) 

d* = (1 + h1q+li,q+i)dq+i + h L bq+1,s1 f V/sud* } 
s=1 u=1 

Hence 

d* = (1 + hbq+l,q+l)dq+l + h E c\iq~lpjufdu*. 
u=l j=uf 

Comparing with dq*+ as given by (3.9), we have 

Aq+l ,q+l = 1/(1 + h'q+l,q+l); {q+l,u = h( Ldq+ljju)/(1 + hq+i,q+i), 
j~u 

u = 1,2, , q. 

Since 4q+l,j = 0(1), Vju = 0(h) for u < j < q by hypothesis, and since q _ n, 
we conclude Vkq+l,u = 0(h), u = 1, 2, * *, q. Direct computation establishes that 

V/21 = 0(h) and so, by induction, it follows that l//ts = 0(h) for s < t as h -> 0, 
n -> oo, nh fixed. 

Since t < n and IPPj ? 1 by stability, then, if Fp(s - 1) = 0(h) for all s, 

Z )Ptsrps1Fp(s - 1) = 0(h) 
s=1 
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and, since Zn-t is bounded as n -> oo, P,(n) = O(h). 
Thus, by choosing aj(x) and bj(x) such that Fp(s - 1) = O(h) we can control 

the perturbation in the corresponding fundamental solution to remain O(h) as 
h -> 0, n -* oo, nh fixed. For a consistent method, one of the roots Dp will be +1; 
let P1 be this root. Since weak instability is due to uncontrolled growth of the 
perturbations of the solutions corresponding to the other roots, we are motivated 
to choose aj(x) and bj(x) such that 

(3.13) Fp(s-1)= 0(h)foralls, p= 2,3,*.,k. 

(It is of interest to note that to achieve Fp(s - 1) = 0(h) for all s, p = 1, 2, 3* *, 
k, it turns out that we have to make the very choice for aj(x), bj(x) which we found 
abortive in (3.2).) 

We now take as our specific target the removal of the weak instability associated 
with optimal stable constant-coefficient methods. Since these occur only when the 
step-number is even, we consider the cases k = 2, k = 4. 

Case k = 2. From (3.13) the appropriate choice for aj(x) and bj(x) will cause 
F2(s - 1) = O(h) for s = 1, 2, *... From (3.3) and (3.11), we see that this can be 
achieved if we take 

ai(xn) = ajq(xn) , (j = 0, 1, 2) 

and 

aO + O + ?2(a +Al) +2 (+ f2) = 0. 

If at the same time we seek the highest possible order for the method, we find, 
taking bj(xn) = tbjq(xn), (j = 01, 2) 

a2=I, a0= ao= -1, 

1 ~~~~4 1 
02=- 01= 3, 00= 3, 

(3.14) 333 

A ~~~A 1A 62 = e al= -3 ao= - 3 ~~~~3 
^ 1 He ^ 2 4C ^ 5 3C 

b2 =-+- bi =- + 3, bo = -36 + . 36 3 ~ 9 ]3~ 36 3* 

It is readily seen that the method defined by these coefficients is stable and con- 
sistent; it is, indeed, of order four, its principal truncation error being 

h5[-04Y(5) (x1)- I (Xn)y(4)(xn)] 

The parameter 3C is free, and from the form of the principal truncation error it is 
clear that we cannot utilize this freedom to increase the order beyond four. 

In a recent paper Brunner [6], using a different approach, has succeeded in 
removing the weak instability from optimal stable linear multistep methods in the 
case when they are applied to specific linear differential equations. In the case k = 2, 
Brunner's formula is 
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(1 + hL)Y8+2 -hLY+l - - 

(3.15) h [ (4 + 5hL)fn+2 + 4(4 + 2hL)fn+? + (4 - hL)fn], 

where L is a stability parameter. If in (3.14) we take 3C = 3, and put q(xn) = 3L the 
resulting formula is identical with (3.15). However, in Brunner's formula the 
stability parameter L is a constant, which is chosen according to the specific 
problem. Thus, for a fixed value of h, the coefficients in Brunner's formula are 
constant, whereas those of (3.14) will vary with q(xn) as the computation proceeds. 
Thus the two methods coincide only when 3C = 3 and the differential equation is 
linear with constant coefficients. 

Returning to (3.14) we still have the choice for the parameter 3C at our disposal. 
From (3.3) and (3.11) it is seen that F2(Xn) can be made identically zero rather than 
0(h), if we satisfy the additional condition 

(3.16) bo + P261 + P2 b2 = 0. 

From (3.12) we see that this choice will cause the perturbation in the fundamental 
solution corresponding to the nonessential root t2 to be completely annihilated. 

We find, from (3.14), that (3.16) is satisfied if ac is given the value 1/6, and with 
this value Eqs. (3.14) define the following method: 

[1 + 
I 

hq(xn)]Yn+2 - hq(x,)yUn+i + [-1 + - hq(xn)] n 

(3.1)= h + - h(x)]fn+2 + fn+i + [ 3 J12hq(x)]f} 

This may be regarded as a stabilized modification of Simpson's rule. 
In passing, it is of interest to observe that if (3.17) is applied to the differential 

equation y' = Qy, Q constant, the resulting difference equation is 

(1- hQ + 12 h2Q2)Yn+2 - hQyn+1 - (I + hQ + 12 h2Q2)Yn = 0 

whose exact solution is 

(3.18) (1~~~~ + 1 hQ + 1 h 2Q2 n 
n (3.18) Yn =A(l ~ 1)Q)+ A2(-), 

where Al and A2 are arbitrary constants. Hence if Q < 0, yn - ) A2(- 1)n as n -? oo 

for any fixed positive h. Thus, all solutions of the difference equation are bounded 
as n -- cio and, moreover, if the initial conditions yo = C, yj = CeQh + 0(h5) are 
satisfied, the bound will be of order h5. This convergence property, besides cor- 
roborating that (3.14) does not suffer the weak instability that Simpson's rule 
would when applied to the equation y' = Qy, Q < 0, is close to the concept of 
A-stability defined by Dahlquist [7]; A-stability, however, is defined in terms of a 
system of linear differential equations, and requires that all solutions of the resulting 
system of difference equations should not only be bounded, but should tend to zero 
as n -? oo for any fixed positive value of h. Dahlquist has shown that the most 
accurate linear multistep method which is A-stable is the Trapezoidal Rule; if this 
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method is applied to the equation y' = Qy the exact solution of the resulting 
difference equation is 

yn = AlQ 2) 

The expressions 

I+2 1hQ 1+2 hQ+ A h2Q2 2 and 2 1 

l-2 hQ 1-2 hQ + 1 h2Q2 

are both Pade approximations to ehQ. The price that has to be paid for the more 
accurate approximation employed in (3.18) is the introduction of the spurious 
second solution A2(- 1)n; the spurious solution is, however, bounded as n -* , 
for all fixed positive h, and by appropriate choice of initial conditions the bound 
can be made of the order of the local truncation error. 

Case k = 4. By a similar analysis, whose details we omit, we can find a set of 
coefficients for which 

(i) the roots of the polynomial Z0o ajci satisfy the condition of stability; 
(ii) Fp(s - 1) O(h) for all s, p = 2, 3, 4; and 
(iii) the method has order six. 
These coefficients, which correspond to (3.14) in the case of k = 2, are functions 

of two free parameters, and it is not possible to satisfy the three additional condi- 
tions which would make Fp(s - 1) = 0. Thus for k = 4, there exists no formula 
analogous to (3.17). The underlying reason for this is that in the case k = 2 it 
happens that the constant-coefficient method of maximal order, namely Simpson's 
rule, is stable. This is not so in the case l = 4, where the method of maximal order 
is unstable. Thus, in demanding that the roots of p(v) satisfy the condition of 
stability, we have effectively used up parameters which would otherwise have 
been at our disposal. 

However, the set of coefficients does define a class of formulae analogous to that 
defined by (3.14). Choosing the two free parameters to give the least cumbersome 
values for the coefficients yields the following formula: 

[ + 
17 

hq(xn)]yn+4- 
1 

hq(Xn)yn+3 + 97 h-(Xn)yn+219 h1 (Xn)9n+l 
+ j- ~ ~ hq +17 h) Xn)?2 

(3.23) + + go (xn)]yn 

=h 
14 

+ 360 hq(xn)jfn+4+ 4[j6 + I 
hq (xn) fn+3 + 15 fn+2 

+ 45 180 hq (xn)]fn1+[4-29hq(xnfn 

The principal truncation error of this formula is 

h7{-8 y(7) (x8) - 23 q (Xn)Y(6) (Xn)] 
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4. Numerical Example. We consider the initial-value problem 

y' =-10(y-1)2; y(0)=22 

which we integrate over the range [0, 5]. The theoretical solution is 

Y +~ I 
y=1?lox ? I 

Thus of/Oy is negative throughout the range of integration, and we expect Simpson's 
rule to exhibit weak instability. The equation is integrated with h = 0.1, first using 
Simpson's rule, and then using (3.17), with q(xn) = -20(y.- 1). The results are 
shown in Table 1, in which starting values are underlined. 

TABLE 1 

x Theoretical Solution Simpson's rule Formula (3.17) 

0.0 2.000 000 2.000 000 2.000 000 
0.1 1.500 000 1.500 000 1.500 000 
0.2 1.333 333 1.302 776 1.333 333 
0.3 1.250 000 1.270 115 1.249 579 
0.4 1.200 000 1.165 775 1.200 050 

3.8 1.025 641 0.867 153 1.025 815 
3.9 1.025 000 0.953 325 1.024 819 
4.0 1.024 390 0.850 962 1.024 565 

4.8 1.020 408 0.040 686 1.020 583 
4.9 1.020 000 -5.990 968 1.019 820 
5.0 1.019 608 -394.086 1.019 782 

Appendix. Proof of Theorem 1. Using the notation and partial results of Henrici's 
proof, we have 

L[y(xm); xm; h] = L[y(xm); h] + hM[y(xm); xm; h] 

where 

IL[y (xm); h]< ? Kx (kh)h 
and 

M[y (xm); xm; h] = [ao (xm) + a, (xm) + + ak (Xm) ]y (Xm) 

? [a, (xm) + 2a2 (Xm) + * * + kak (Xm) ]y'(xm)h 

? 4/[Iai(xm)I + 21a2 (Xm) I + ... + klak (Xm)I]x(kh)h 

- [bo (xm) + bi (xm) + ? * + bk (Xm) ]Y'(xm)h 

- 44b0(xm)I + Ibi(xm)I + + Ibk(Xm)I]X(kh)h, 
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where jfj ? 1, l4'I < 1. 
For all x e [a, b], we have 
(i) laj(x)l _ A, lbj(x)l < B, (j = 0O1, , 7k), by (2.1), 
(ii) ao(x) + ai(x) + . ?+ ak(x) = 0, by consistency, and 
(iii) Iy'(x)I < F, where F is a finite constant, since y'(x) = f(x, y(x)), being a 

continuous function of x on the closed interval [a, b], is necessarily bounded on 
[a, b]. 

Thus IM[y(x,,m); xm; h]l ? (k + 1)h('kA + B)[F + X(kh)], and hence 
jL[y(xm); xm; h] ? _ K'X (kh)h + Gh2, where 

K' = K + (k? + )h(kA + B), G = (k? + )F('kA + B). 

On subtracting L[y(xm); xm; h] from the corresponding relation 

cxk(Xm)Ym+k + ? + O(xm)ym - h[k (Xm) fm+k + + 130(Xm) fm] = 0 

we obtain 

(A.1) cxk(Xm)em+k + ** + ?&o(Xm)em - h[&k(Xm)gm+kem+k + ***+ ? o(xm)gmem] 

= Om[K'x(kh)h + Gh2], 

where em = Ym - y(xm) and 

f [f(Xm; ym) - f(Xm, y(xm))]em', em 7? 0, 

.0 em = O 

and where I OmIn 1. 
On rewriting (A.1) in the form 

(axkem+k + ?+ coem) 

- h{ [/k(Xm)gm+k - ak(xm)]em+k + * + [1o(Xm)gm - ao(xm)]emI 

= Om[K'X(kh)h + Gh2] , 

we see that Henrici's Lemma 5.6 applies with 

A = [K'x(kh) + Gh]h 

and 

B* = 42[Iol + ?+ ~k ? + h(k + 1)B] + (k + 1)A, 

where ? is the Lipschitz constant of f(x, y). Since K'X(kh) + Gh - 0 as h -* 0, 
the proof is concluded exactly as in Henrici. 
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